106. ¹H-NMR.-spektroskopische Bestimmung der Enantiomerenreinheit von Allencarbonsäureestern mit optisch aktiven Europium-Verschiebungsreagenzien

von Robert W. Lang¹) und Hans-Jürgen Hansen

Institut für Organische Chemie der Universität, Pérolles, CH-1705 Freiburg i.Ü.

Herrn Prof. Dr. Dr. h. c. A. S. Dreiding zum 60. Geburtstag gewidmet

(8.11.79)

¹H-NMR. Spectroscopic Determination of Enantiomeric Purities of Allenic Esters Using Optically Active Europium Shift Reagents

Summary

The racemic allenic methyl esters 3-7 and the racemic allenic diesters 8-10 (cf. Scheme 2) in 1,1,2-trichloro-1,2,2-trifluoroethane (TCFE) and CCl₄ in the presence of optically active tris[3-(heptafluorobutyryl)-(+)-camphorato]europium(III) (Eu (hfc)₃) have induced unlike ¹H-NMR. shift differences ($\Delta\Delta\delta$) for the protons of the methoxycarbonyl groups of their enantiomers. In some allenic esters the shift reagent causes additional separation of resonance signals; thus, further substituents on the allenic framework may be differentiated in the racemic mixture. This finding provides a widely applicable method for the determination of absolute enantiomeric purities of allenic esters and their corresponding acids. Accordingly we found for optically pure (+)-(S)-2-methyl-2,3-pentadienoic acid ((+)-(S)-13; cf. Fig. 2) a calculated [a]²⁸⁹₅₈₉ value of + 73.3 ± 1.8°. Finally, the substituent effects on $\Delta\Delta\delta$ -values (cf. Table 1-3) are discussed.

Im Zusammenhang mit mechanistischen Untersuchungen interessierten uns optisch aktive Allencarbonsäureester und die Kenntnis ihrer Enantiomerenreinheit e²) In den wenigen bekannten Fällen wurde die optische Reinheit p²) von Allenen vorwiegend mit chemischen Korrelationsmethoden abgeleitet (vgl. [3]). Von den anderen experimentellen Methoden³) zur Bestimmung der Enantiomerenreinheit ist unseres Wissens bei optisch aktiven Allenverbindungen nur jene der paramagnetisch induzierten unterschiedlichen ¹H-NMR.-Verschiebungsdifferenzen durch optisch aktive Europium(III)-Komplexe in einem Falle angewendet worden⁴).

¹⁾ Teil der geplanten Dissertation, Universität Freiburg i. Ü.

 ²) e=(E₊-E₋)/(E₊+E₋), E₊ und E₋: Molenbrüche der Enantiomeren; p=[a]/[A], [a]= spezifische Drehung einer Substanz, [A]= spezifische Drehung des reinen Enantiomeren; vgl. [1] [2].

³) Bzgl. einer Zusammenstellung s. [1] [4].

⁴) Bzgl. der Verwendung optisch aktiver Europium-Verschiebungsreagenzien in der NMR.-Spektroskopie s. [5] [6].

a) Die gezeichneten Formeln drücken nicht den Chiralitätssinn aus.

Die Enantiomerenreinheit der Allenylalkohole 1a und 1b [7] (Schema 1) wurde so aufgrund der verschiedenen ¹H-NMR.-Verschiebungsdifferenzen der diastereotopen geminalen Methylgruppen in 1a bzw. der diastereotopen Protonen an C(1) in 1b in Gegenwart von Tris[3-(heptafluorobutyryl)-(+)-camphorato]europium(III) (Eu(hfc)₃) [8] in Deuteriochloroform bestimmt. Die anderen um die Chiralitätsachse angeordneten Substituenten zeigten keine Unterschiede der induzierten Verschiebungsdifferenzen bei den Enantiomeren. Indessen war schon früher gefunden worden [9], dass bei den racemischen Allenyldiphenylphosphinoxiden 2a-c das Proton bzw. die Methylgruppe an C(3) des Allenylrestes in Gegenwart von Tris[3-(pivaloyl)-(+)-camphorato]europium(III) [10] in Tetrachlorkohlenstoff für die beiden Enantiomeren eine unterschiedliche induzierte ¹H-NMR.-Verschiebungsdifferenz aufweist.

Es ist bekannt, dass auch Estergruppen mit Europium-Verschiebungsreagenzien in schwache Wechselwirkung treten (vgl. [11-13]) und dass bei Estern von Carbonsäuren mit Chiralitätszentren nahe der Carboxylgruppe mit chiralen Europium-Verschiebungsreagenzien unterschiedliche induzierte ¹H-NMR.-Verschiebungsdifferenzen – besonders für die Methylprotonen von Methylestern – gefunden werden (vgl. [14-16]). Deshalb haben wir die in *Schema 2* wiedergegebenen ohiralen

Allencarbonsäureester 3-10 in Gegenwart von Eu (hfc)₃ und Tris [3-(trifluoroacetyl)-(+)-camphorato]europium(III) (Eu (tfc)₃) [17] bei 30°⁵) NMR.-spektroskopisch untersucht. Es sei vorweggenommen, dass mit Eu (tfc)₃ weder in Tetrachlorkohlenstoff noch in 1, 1, 2-Trichlor-1, 2, 2-trifluoräthan (TCFE)⁵) unterschiedliche ¹H-NMR.-Verschiebungsdifferenzen für die um die Chiralitätsachse angeordneten Gruppen beobachtet wurden⁶).

⁵) Temperaturabhängigkeit und Lösungsmitteleinflüsse bei Europium-induzierten ¹H-NMR.-Verschiebungen werden z.B. in [15] diskutiert.

⁶⁾ Eu(hfc)₃ ruft in der Regel grössere ¹H-NMR.-Verschiebungsdifferenzen hervor als Eu(tfc)₃ [16].

Die Allencarbonsäureester wurden nach bekannten Methoden bereitet: Die Methylester 4-6 erhielten wir in Anlehnung an eine Vorschrift von *Bestmann & Hartung* [18] durch Umsetzung der entsprechenden Säurechloride mit (Triphenylphosphonio)-(1-methoxycarbonyl)äthylid (11b) in Tetrahydrofuran (THF; vgl. die analoge Umsetzung in *Schema 3*). Nach diesem Verfahren liess sich auch Chloroformylessigsäure-methylester mit 11b und 11a zu den Diestern 9 bzw. 10⁷) umsetzen, was zeigt, dass die Methode von *Bestmann & Hartung* prinzipiell auch zur Synthese von Allendicarbonsäurediestern geeignet ist. Der Allencarbonsäureester 7 wurde bei der Umsetzung von Äthylphenylketen mit (Triphenylphosphonio)-(methoxycarbonyl)methylid in Toluol in guter Ausbeute erhalten (vgl. [18] [20]).

Der dissymmetrische Dimethyldiester 8 wurde aus Allen-1,3-dicarbonsäure, die uns aus anderen Untersuchungen [21] (vgl. [22] [23]) zur Verfügung stand, und Diazomethan (vgl. Schema 3, d)) bereitet. Auch der Methylester 3 sowie seine

- a) 2 Mol-Äquiv.11a in CH₂Cl₂, 49 Std. Kochen unter Rückfluss, Ausbeute 66%; vgl. [19].
- b) 4.8N NaOH in H₂O/C₂H₅OH 3:1, 1 Std. Kochen unter Rückfluss (vgl. [20]), Ausbeute 98% (3:1)-Gemisch aus 13 und 14.
- c) Auftrennung von (RS)-13 über die Cinchonidin-Salze in Aceton [20a].
- d) CH_2N_2 in Diathyläther bei -78° , Ausbeute 76,5%; vgl. [19].

⁷⁾ Aus Gründen der Einheitlichkeit und Übersichtlichkeit führen wir die Namen der Dicarbonsäurediester 8-10 auf den entsprechenden Monocarbonsäurestamm zurück; d.h. 8=4-Methoxycarbonyl-2,3-butadiensäure-methylester statt 2,3-Pentadiendisäure-dimethylester oder 1,3-Allendicarbonsäure-dimethylester etc., und sprechen nur im allgemeinen Sinne von Allencarbonsäureestern bzw. Allendicarbonsäurediestern.

optisch aktiven Formen (R)-3 und (S)-3 wurden auf diese Weise aus 2-Methyl-2, 3pentadiensäure (13; Smp. 55°) bzw. ihren enantiomeren Formen hergestellt (Schema 3). Die Säure 13 entstand ihrerseits neben der öligen Alkincarbonsäure 14 (vgl. [24]) bei der Verseifung des Äthylesters 12⁸), der in 66% Ausbeute nach der Variante von Andrews et al. [19] synthetisiert wurde (vgl. Schema 3). Das (3:1)-Gemisch von 13 und 14 wurde durch Kristallisation aus Pentan getrennt. Kontrollexperimente mit der optisch aktiven Säure (S)-13 ($[a]_{589}^{29} = +22,0^{\circ}$; vide infra) und einem (32:68)-Gemisch aus 13 und 14 zeigten, dass sich unter den Verseifungsbedingungen von 12 das in Schema 4 wiedergegebene Gleichgewicht zwischen den Anionen 13a und 14a einstellt⁹). Aus optisch aktivem (S)-13 werden dabei (RS)-13 und (RS)-14 gebildet, d.h. die 1,3-H-Verschiebungen erfolgen intermolekular, über ein 13a und 14a gemeinsames mesomeres Carbeniat-Carboxylat-Dianion (vgl. auch [26]), wie es auch zusätzliche Isomerisierungen in 4,8 N NaOD in D₂O/C₂H₅OD 3:1 belegen¹⁰).

a) Kochen mit 4,8 N NaOH in H₂O/C₂H₅OH 3:1 unter Rückfluss.

Die Auftrennung der Säure 13 in ihre (+)-(S)- und (-)-(R)-Antipoden wurde nach *Runge et al.* [20a], die auch die absolute Konfiguration der Antipoden festlegten (vgl. auch [27]), durchgeführt. Der maximale von uns für die (+)-(S)-Form (Smp. 64°) beobachtete $[a]_{589}^{20}$ -Wert betrug + 70,4° (c=7,7 mg/ml, C_2H_5 OH), was aufgrund der nachfolgend zu beschreibenden Europium-Verschiebungsexperimente einem e von 0,92±0,02 entspricht (vgl. auch *Tab. 4*, exper. Teil)¹¹).

Im ¹H-NMR.-Spektrum der (*RS*)-Allencarbonsäure-methylester 3-7 und der (*RS*)-Diester 8-10⁷) erscheinen die Protonen der Methoxycarbonylgruppe als Singulett bei *ca.* 3,7 ppm. In TCFE-Lösung und mit einer Ausnahme auch in CCl₄-Lösung wurde dieses Signal bei der Zugabe von Eu (hfc)₃ in zwei Singulette aufgespalten, wobei in TCFE stets die grösseren induzierten Verschiebungsdifferenzen für die entsprechenden Enantiomeren ($\Delta \Delta \delta$ -Werte) erhalten wurden. Die Ergebnisse sind – nach Substituenteneinflüssen geordnet – in den *Tabellen 1-3* zusammengefasst. Bei den Estern 3 und 4 (*Tab. 1*) wurde auch noch eine schwache Aufspaltung des Dubletts der Methylgruppe an C(2) induziert¹²). Der Diester 8 zeigt für

⁸) Runge et al. [20a] verseiften 12 mit 1,35N NaOH in H₂O/C₂H₅OH 3:1 unter Rückflusskochen, beschrieben aber nur die Bildung von 13 (Smp. ca. 25°) in 61% Ausbeute. Unsere Wiederholung dieses Versuches lieferte in 56% Ausbeute ein (3:2)-Gemisch von 13 und 14.

⁹⁾ Gleichgewichte dieser Art wurden schon früher beschrieben (vgl. [23] [25]).

¹⁰) Beim Erhitzen von (RS)-13 in der genannten Mischung wurde nach der Aufarbeitung ein (3:1)-Gemisch von 4-Deuterio-2-methyl-2,3-pentadien- und 2-Deuterio-2-methyl-3-pentinsäure erhalten.

¹¹) Runge et al. [20a] (vgl. auch [27]) geben für ihre als optisch rein angesehene (+)-(S)-Säure einen [a]339-Wert von 56,6° (c=8,4 mg/ml, C₂H₅OH) an; d.h. e=0,77±0,02 gemäss unserer Messungen.

¹²) Im ¹³C-NMR.-Spektrum des (*RS*)-Esters 3 wurden in TCFE in Gegenwart von 0,13 Mol-Äquiv. Eu(hfc)₃ keine unterschiedlichen ¹³C-Verschiebungsdifferenzen der Enantiomeren festgestellt.

Fig. 1. ¹*H-NMR.-Spektren von* 3 (90 *MHz; CCl*₄). a) Übersichtsspektrum von (*RS*)-3 (1M Lösung); b) Signale von H-C(4) und H₃C-C(2) bzw. H₃C-C(4) (gedehnte ppm-Skala; vgl. Übersichtsspektrum a)); c) Übersichtsspektrum von (*RS*)-3 in Gegenwart von 0,125 Mol-Äquiv. Eu(hfc)₃. Das von Eu(hfc)₃ verursachte breite Singulett bei *ca.* 3,1 ppm wurde aus der Abbildung des Spektrums entfernt; d) Signale der CH₃O-Protonen, bei gedehnter ppm-Skala in Richtung abnehmender Feldstärke aufgenommen (vgl. Übersichtsspektrum c)). Die Reihenfolge von links nach rechts entspricht der Messreihe 1-8 (vgl. *Tab.5*, exper. Teil).

die homotopen olefinischen Protonen ähnlich grosse $\Delta\Delta\delta$ -Werte wie für die Protonen der ebenfalls homotopen Methoxycarbonylgruppen (*Tab. 3*).

Von Interesse ist die Beobachtung, dass der unsymmetrisch substituierte Diester 9 für die Protonen der heterotopen Methoxycarbonylgruppen unterschiedliche $\Delta\Delta\delta$ -Werte ergibt. Aufgrund des Vergleichs der Europium-Verschiebungsgradienten G (vgl. [28]) der Methoxycarbonylgruppen von 8 (G=11) mit jenen von 9 (G=6 bzw. 10) lässt sich bei 9 der grössere $\Delta\Delta\delta$ -Wert, der mit G=10 verknüpft ist, den Protonen der Methoxycarbonylgruppe an C(4) zuordnen. In Übereinstimmung damit weisen die Protonen der CH₃OOC-Gruppe des Diesters 10 einen etwa gleich grossen $\Delta\Delta\delta$ -Wert (G=10) auf wie die Protonen der CH₃OOC-Gruppe an C(4) von 9. Wie bei 8 wurde auch bei den Diestern 9 und 10 in Gegenwart von Eu(hfc)₃ eine Aufspaltung des Quadrupletts für H-C(4) beobachtet, wobei aber der Effekt in der Reihenfolge 8 \rightarrow 10 deutlich abnimmt.

Um die Brauchbarkeit der Methode für die Bestimmung der Enantiomerenreinheit von Allencarbonsäuren bzw. ihrer Ester zu testen, wurden optisch aktive Fraktionen der Säure 13 mit verschiedenen $[a]_{\lambda}^{20}$ -Werten (vgl. *Tab. 4*, exper. Teil) wie erwähnt mit Diazomethan zu 3 verestert. Von 3 wurden unter den in *Tabelle 1* angegebenen Bedingungen die in *Figur 1d* ausschnittsweise wiedergegebenen ¹H-NMR.-Spektren (CCl₄) in Gegenwart von Eu(hfc)₃ aufgenommen. Zum Vergleich sind in *Figur 1a-c* die Spektren von (*RS*)-3 und (*RS*)-3+Eu(hfc)₃ wiedergegeben. Wie *Figur 2* zeigt, stehen die $[a]_{589}^{20}$ -Werte der (*S*)- und (*R*)-Formen von 3 bzw. 13 in einem linearen Verhältnis zu den ¹H-NMR.-spektroskopisch bestimmten e-Werten, d.h. die mit Hilfe von Eu(hfc)₃ abgeleiteten Enantiomerenreinheiten e

Fig. 2. Lineare Abhängigkeit der spezif. Drehwerte $[a]_{289}^{289}$ von den ¹H-NMR.-spektroskopisch bestimmten Enantiomerenreinheiten e (vgl. Tab. 4 und 5, exper. Teil). a) $-\frac{1}{2}$ (+)-(S)-3, $[a]_{289}^{289}$ = +74,7±1,8° für e = 1 b) ---- $\frac{1}{2}$ ---- (+)-(S)-13, $[a]_{289}^{289}$ = +73,3±1,8° für e = 1

von 3 und 13 dürfen den optischen Reinheiten p von 3 und 13 gleichgesetzt werden (vgl. hierzu [29])¹³). Für den optisch reinen Ester (S)-3 ergibt sich damit ein berechneter $[a]_{589}^{20}$ -Wert (Äthanol) von + 74,7±1,8° und für die optisch reine Säure (S)-13 von + 73,3±1,8° (Fig. 2)¹⁴).

Aus den in den Tabellen 1-3 zusammengestellten $\Delta\Delta\delta$ -Werten für die Protonen der Methoxycarbonylgruppe in den Allencarbonsäure-methylestern 3-7 sowie in den Allendicarbonsäurediestern 8-10 lassen sich einige allgemeine Aussagen ableiten, wenn man annimmt, dass auch bei diesen Estern Eu (hfc)₃ bevorzugt mit der Estercarbonylgruppe in Wechselwirkung tritt (vgl. [31] [32]) und dabei schwache Interaktionskomplexe bildet (vgl. [5]), d.h. Konformerengleichgewichte bei den Substratmolekeln nicht beeinflusst werden sollten (vgl. [6] [33-36]). Es kann davon ausgegangen werden, dass bei den Estern 3-7 bei coplanarer Anordnung der Estercarbonylgruppe und der C(2), C (3)-Doppelbindung die s-cis- und die s-trans-Konformation bevölkert sind (Schema 5).

Nach IR.- und Mikrowellen-Messungen ist bei Acrylsäure-methylester und Abkömmlingen davon in der Gasphase und in CS₂-Lösung offenbar die s-*cis*-Konformation begünstigt (vgl. [37] und dort zit, Lit.). Dies gilt auch für a,β -ungesättigte Carbonsäuren [38] [39]. Europium-Verschiebungsexperimente mit Crotonsäure- und Tiglinsäure-methylester in CDCl₃ stehen ebenfalls im Einklang mit einer leichten Bevorzugung der s-*cis*-Konformation dieser Ester [33] [34a]. Anderseits zeigt eine Kristallstrukturanalyse der Allen-1,3-dicarbonsäure, dass diese im Kristallgitter mit beiden Carbonylgruppen in der s-*trans*-Anordnung vorliegt [40], wobei die Carbonyl- und Hydroxygruppen eine synperiplanare Lage einnehmen. Auch bei Vinylketonen ist gemäss Europium-Verschiebungsexperimenten die s-*trans*-Konformation in der Regel stärker bevölkert als die s-*cis*-Konformation [34b].

Nach Dreiding-Modellen beträgt in der s-cis-Konformation des Esters 3 der Abstand des O-Atoms der Carbonylgruppe zu den beiden Substituenten \mathbb{R}^2 , \mathbb{R}^3 an C(4) (CH₃, H) etwa 4,5 bzw. 4,2 Å und in der s-trans-Konformation mindestens 5,7 bzw. 5,5 Å (vgl. auch die Newman-Projektionen entlang der C(1), C(2)-Bindung in Schema 5). Das chirale Verschiebungsreagenz Eu (hfc)₃ dürfte also besonders bei der Wechselwirkung mit der s-cis-Konformation dem differenzierenden Einfluss der Substituenten \mathbb{R}^2 und \mathbb{R}^3 unterliegen, d. h. mit der (R)- und (S)-Form der Ester diastereomere, verschieden starke Wechselbeziehungen eingehen und damit verschieden starke paramagnetisch induzierte Pseudokontaktverschiebungen in den

¹³) Damit im Einklang steht die Beobachtung, dass die [a]²⁰_A-Werte (Äthanol) von 13 konzentrationsunabhängig sind (vgl. *Tab. 4*, exper. Teil sowie [27]).

¹⁴) $[\Phi]_{\overline{S}99}^{5} = +\overline{82,2} \pm 2.0^{\circ}$ (Äthanol) für (S)-13. Runge & Kresze [27] berechneten aufgrund von Chiralitätsfunktionen (vgl. [30]) für (S)-13 einen maximalen χ -Wert ($\cong [\Phi]$) von + 59,3°.

Enantiomeren erzeugen¹⁵). Nimmt man an, dass die Methylgruppe an C(2) bei den Estern 3-6 die s-cis-Konformation begünstigt, so lassen sich die etwa gleich grossen $\Delta\Delta\delta$ -Werte (vgl. Tab. 1 und 2) für die CH₃O-Gruppe dieser Ester verstehen. Die Ester 6 und 7 unterscheiden sich nur im Substituenten (R¹) an C(2) (CH₃ bzw. H). Der Unterschied in den $\Delta\Delta\delta$ -Werten aber ist markant: Für 6 wird ein im Vergleich zu den Estern 3-5 nahezu «normaler» $\Delta\Delta\delta$ -Wert, für 7 ein $\Delta\Delta\delta$ -Wert nahe Null gefunden. Offenbar ist bei 7 wegen des Fehlens der Methylgruppe an C(2) die s-*trans*-Form stark bevölkert, in welcher sich der differenzierende Einfluss der Substituenten an C(4) (C₆H₅ und C₂H₅) im Europium-Komplex nicht mehr auswirkt. Dass die s-*trans*-Konformation der Ester mit Eu(hfc)₃ in stärkere Wechselwirkung tritt als die s-*cis*-Konformation, ergibt sich aus der Beobachtung, dass die Pseudokontaktverschiebungen ($\Delta\delta$) bzw. Verschiebungsgradienten (G) der CH₃O-Gruppen gerade in jener Reihenfolge (3-5→6→7) zunehmen, in der die $\Delta\Delta\delta$ -Werte abnehmen¹⁶).

R H	¢=°=°с, соосна сна	Lösungs- mittel ^a)	c ^b)	CH3O°) ⊿δ [ppm]	CH3O ⊿∆δ [ppm]	<i>H</i> ₃ C−C(2)°) ΔΔδ [ppm]
3	$R = CH_3$	CCl₄ TCFE	0,125	1,35 (11,0)	0,030	0, 009 (8,5) 0.010
4	$R = CH_3CH_2$	CCl ₄ TCFE	0,160	1,65 (11,0)	0,033 0.046	0,005 (8,5) 0,007
5	$R = CH_3(CH_2)_4$	CCl ₄ TCFE	0,150	1,50 (10,5)	0,023 0,031	ca. 0 (8,0) ca. 0

Tabelle 1. $Eu(hfc)_3$ -Verschiebungsexperimente: Einfluss der Substituenten an C(4)

^a) Ca. 1M Lösung bzgl. Ester in 0,5 ml Lösungsmittel.

^b) c = Molaritätsverhältnis [Eu(hfc)₃]/[Ester].

c) In Klammern ist der Verschiebungsgradient G gegeben (vgl. [28]).

° °-⊦	ce ^{H5} ce ² c	Lösungs- mittel ^a)	с ^ь)	CH3O°) ⊿δ [ppm]	CH3O ⊿⊿δ [ppm]	R−C(2)°) ⊿∆δ [ppm]
6	$R = CH_3$	CCl ₄ TCFE	0,150	1,85 (12,0)	0,017	<i>ca</i> . 0 (9,5) <i>ca</i> . 0
7	$\mathbf{R} = \mathbf{H}$	CCl₄ TCFE	0,150	1,95 (13,0)	<i>ca.</i> 0 0,006	<i>ca.</i> 0 (14,0) <i>ca.</i> 0
a)	^b) ^c) Siehe Fussnoten zu <i>Tabelle 1</i> .					. · . <u> · · · - </u>

Tabelle 2. Eu(hfc)₃-Verschiebungsexperimente: Einfluss der Substituenten an C(2)

¹⁵) Die Experimente mit (+)-(S)- und (-)-(R)-3 (vgl. Schema 5, R¹=CH₃, R²=H, R³=CH₃ bzw. R²=CH₃, R³=H) zeigen, dass bei diesem Ester die (S)-Form den grösseren und die (R)-Form den kleineren Δδ-Wert für die CH₃O-Gruppe mit Eu(hfc)₃ ergeben.

¹⁶) In diesen Zusammenhang fügt sich auch die Beobachtung, dass eine Aufspaltung des Dubletts der Methylgruppe an C(2) bei 3 und 4, nicht aber mehr bei 5 und 6 in Gegenwart von Eu(hfc)₃ auftritt (vgl. hierzu auch die Zunahme von G von ca. 8,5-8,0 (3-5) auf 9,5 (6)). Auch bei 7 wird das Triplett für H-C(2) in Gegenwart von Eu(hfc)₃ nicht aufgespalten.

Ähnliche Vergleiche wie für die Allencarbonsäure-methylester 3-7 lassen sich auch für die Allendicarbonsäurediester 8-10 (vgl. Tab. 3) anstellen. Die Ergebnisse zeigen, dass die Protonen der Methoxycarbonylgruppe an C(4) - unter Berücksichtigung der homotopen Lage der Methoxycarbonylgruppen in 8 – bei allen drei Estern vergleichbare $\Delta\Delta\delta$ -Werte und nahezu gleiche Verschiebungsgradienten G aufweisen. Bei einem Vergleich mit den Methylestern 3-5 fällt auf, dass für 8-10 bei etwa gleich grossen G-Werten etwas kleinere $\Delta\Delta\delta$ -Werte (auf das gleiche Verhältnis [Eu(hfc)₃]/[Ester] bezogen) gefunden werden¹⁷). Möglicherweise spiegelt sich hierin die geringere Differenz der Raumbeanspruchung einer Methyl- und einer Alkoxycarbonylgruppe (= \mathbb{R}^2 bzw. \mathbb{R}^3 ; \mathbb{R}^1 = H in Schema 5) bei 9 und 10 im Vergleich zu derienigen eines H-Atoms und einer Alkylgruppe (= R^2 bzw. R^3 ; R^1 =CH₃ in Schema 5) bei 3-5 wieder. Hiermit im Einklang steht auch die Beobachtung, dass bei den vergleichbaren Estern 3 und 9 für die Methoxycarbonylgruppe an C(2), welches auch die Methylgruppe trägt, im ersteren Fall ein grösserer $\Delta\Delta\delta$ -Wert gefunden wird. Das Gleiche gilt auch für die Methylgruppe an C(2) $(\Delta\Delta\delta(3) > \Delta\Delta\delta(9))$, d.h. auch hier scheint Eu (hfc)₃ zwischen H und CH₃ (= \mathbb{R}^2 bzw. \mathbb{R}^3 in Schema 5) stärker zu differenzieren als zwischen H und COOCH₃ (= R^2 bzw. R^3 in Schema 5), was mit der grösseren Raumbeanspruchung der Methylgruppe im Vergleich zur Methoxycarbonylgruppe übereinstimmt. Interessant ist noch ein Vergleich der Äthylester 10 (Tab. 3) und 12 (Schema 3). Beim ersteren wird in Gegenwart von Eu(hfc)₃ auch das Quadruplett der Methylenprotonen, nicht aber das Triplett der Methylprotonen der Äthoxycarbonylgruppe aufgespalten. Bei letzterem verhält es

		· •				b
СН3	$\overset{\text{OOC}}{\underset{\text{H}}{\overset{3}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{\overset{2}{$	Lösungs- mittel ^a)	с ^ь)	CH ₃ O°) Δδ [ppm]	CH₃O ∆∆δ [ppm]	Andere ⊿⊿ð ^d)
8	$R^1 = CH_3, R^2 = H$	CCl ₄ (0,70) TCFE	0,24	1,30 (11)°) 1,20 (11)°)	0,016 0,017	0,016 (14) ^e) → olefin. H
9	$\mathbf{R}^1 = \mathbf{C}\mathbf{H}_3, \mathbf{R}^2 = \mathbf{C}\mathbf{H}_3$	CCl ₄ (0,10)	0,26	2,30 (10) ^f)	0,037 ^f)	$0,027(6) \rightarrow CH_3O-C(1)$ $0,006(5) \rightarrow H_3C-C(2)$ $0,006(14) \rightarrow H-C(4)$
10	$\mathbf{R}^1 = \mathbf{CH}_3\mathbf{CH}_2, \mathbf{R}^2 = \mathbf{CH}_3$	CCl ₄ (0,50)	0,20	2,00 (10)	0 ,0 36	$0.028 (6) \rightarrow CH_3CH_2O$ $ca. 0 (2) \rightarrow CH_3CH_2O$ $0.005 (5) \rightarrow H_3C-C(2)$ $0.005 (13) \rightarrow H-C(4)$
		TCFE		1,80 (10)	0 ,0 40	, , , , , , , , , , , , , , , , , , , ,

	Гabelle 3.	Eu(hfc)	-Verschiebungse	experimente:	Gemischte	Substituentenein	flüsse
--	------------	---------	-----------------	--------------	-----------	------------------	--------

a) Molarität der Diester in Klammern; 8 und 10 wurden in 0,5 ml CCl₄ bzw. 1,1,2-Trichlor-1,2,2trifluoräthan (TCFE), 9 in 1 ml CCl₄ gemessen.

^b) c = Molaritätsverhältnis [Eu(hfc)₃]/[Diester].

^c) In Klammern ist der Verschiebungsgradient G gegeben (vgl. [28]).

d) Werte nur in CCl₄-Lösung bestimmt; G-Werte in Klammern.

e) Unter Berücksichtigung der Homotopie der Gruppen.

f) Verschiebungen der Signale von $CH_3OOC-C(4)$.

¹⁷⁾ Es kann davon ausgegangen werden, dass bei den gewählten Konzentrationsverhältnissen von Eu(hfc)₃ zu Ester bei allen hier untersuchten Estern nur (1:1)-Komplexe gebildet werden.

sich gerade umgekehrt, indem in TCFE-Lösung in Gegenwart von 0,13 Mol-Äquiv. Eu (hfc)₃ das Triplett der Methylprotonen (G=3, $\Delta\Delta\delta$ =0,013 ppm), nicht aber das Quadruplett der Methylenprotonen (G=11, $\Delta\Delta\delta\approx0$ ppm) der Äthoxycarbonylgruppe verdoppelt werden¹⁸).

Die gut interpretierbaren Resultate der Europium-Verschiebungsexperimente mit den Allencarbonsäureestern und -dicarbonsäurediestern sind sicher auf die in bezug auf die Chiralitätsachse eindeutig definierten Lagen der Substituenten zurückzuführen. Damit sollte aber auch die Möglichkeit gegeben sein, die absolute Konfiguration von chiralen Allencarbonsäureestern durch die induzierten unterschiedlichen ¹H-NMR.-Verschiebungen in Gegenwart von optisch aktivem Eu (hfc)₃ abzuleiten.

Wir danken Herrn F. Nydegger für die Ausführung der Elementaranalysen und Herrn Dipl.-Chem. M. Cosandey, Institut für Organische Chemie der Universität Freiburg i.Ü., für die Aufnahme von ¹³C-NMR.-Spektren. Die vorliegende Arbeit wurde in dankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

Experimenteller Teil

Allgemeine Bemerkungen. Bestimmung der Smp. mit einem Büchi-SMP-20-Gerät; die Werte sind nicht korrigiert. - IR.-Spektren [Beckman-Acculab-4] als Film (Flüssigkeiten) oder als KBr-Presslinge (Festkörper); Angaben in cm⁻¹. - ¹H-NMR.-Spektren [Varian T 60, Varian EM 390] (Messfrequenz, Lösungsmittel); chemische Verschiebungen (Bereiche oder Signalzentren) in ppm relativ zu Tetramethylsilan (TMS; = 0 ppm) als internem Standard; s = Singulett, d = Dublett, t = Triplett, qa = Quadruplett, m=Multiplett; Kopplungskonstanten J in Hz. Bei Doppelresonanzexperimenten Angabe des Einstrahlungsortes ≩ in ppm → neue Multiplizität. - ¹³C-NMR.-Spektren [Varian XL 100] (Lösungsmittel) bei 25,2 MHz; Angaben der Resonanzlinien des rausch-entkoppelten Spektrums, Multiplizitäten (vgl. ¹H-NMR.) aus 'off-resonance'-Spektrum. - Analytische Gas-Chromatogramme (GC.) an Carlo-Erba-Fractovap-2101AC-Geräten unter Verwendung folgender Glaskapillarkolonnen nach Grob [41]: OV-61 (20 m×0,36 mm), OV-1 (20 m×0,30 mm); Trägergas Wasserstoff. Quantitative Auswertungen erfolgten mit einem elektronischen Integrator von CSI (Supergrator 2). - Analytische Dünnschichtchromatogramme (DC.) an Aluminiumoxid (Polygram-Fertigfolien Alox N/UV254, Macherey-Nagel) mit Hexan/ Äther 1:1, Sprühreagenz Iproz. Na₂CO₃-alkalische KMnO₄-Lösung. – Säulenchromatographie an Aluminiumoxid (standardisiert; Aktivitätsstufe II-III; Fa. Merck) mit Hexan/Äther 9:1. - Optische Drehwinkel a [Perkin-Elmer-241-MC-Polarimeter] gemessen bei 20° in Äthanol («Uvasol») und bei fünf verschiedenen Wellenlängen. - Abdampfoperationen im Rotationsverdampfer (RV.) bei 20-40% 12-14 Torr; Destillation kleiner Substanzmengen im Kugelrohr (Luftbad). - Die optisch aktiven Verschiebungsreagenzien Tris[3-(trifluoroacetyl)-(+)-camphorato]europium(III) (Eu(tfc)₃) und Tris[3-(heptafluorobutyryl)-(+)-camphorato]europium(III) (Eu(hfc)₃) wurden von der Fa. Aldrich bezogen. -Lösungsmittel: Pentan- und Hexan-Fraktion, Benzol, Toluol sowie Äther wurden über Natrium getrocknet. Tetrahydrofuran (THF) wurde über Aluminiumoxid (basisch, Woelm, Aktivitätsstufe I) filtriert und über Lithiumaluminiumhydrid destilliert.

1. Herstellung racemischer Allencarbonsäuren bzw. -ester. – 1.1. Phosphonioalkylide 11. 1.1.1. (Triphenylphosphonio)-(1-äthoxycarbonyl)äthylid (11a). Umsetzung von 262 g (1,0 mol) Triphenylphosphin und 181 g (1,0 mol) 2-Brompropionsäure-äthylester wurde nach [18] ausgeführt: 270 g (75%) 11a¹⁹) vom Smp. 159-160° ([18]: 159-160°; [42]: 156-157°).

C₂₃H₂₃O₂P (362,34) Ber. C 76,23 H 6,40% Gef. C 76,02 H 6,37%

¹⁸) Die Methylgruppe an C(2) von **12** ergibt G=8 und $\Delta\Delta\delta$ =0,017 ppm. Die übrigen Signale zeigen wie bei (*RS*)-3 keine Aufspaltung.

¹⁹) Sorgfältiges Trocknen bis zur Gewichtskonstanz ist für die weiteren Umsetzungen von entscheidender Bedeutung (5 Tage über CaCl₂ im Exsikkator und anschliessend 3 Tage über P₂O₅ i.HV. bei RT.).

1.1.2. (Triphenylphosphonio)-(1-methoxycarbonyl)äthylid (11b). Umsetzung von 118,0 g (0,45 mol) Triphenylphosphin mit 75,2 g (0,45 mol) 2-Brompropionsäure-methylester nach [42] lieferte 37,4 g (24%) 11b¹⁹) vom Smp. 151-153° ([42]: 152-153°).

C₂₂H₂₁O₂P (348,31) Ber. C 75,86 H 6,08% Gef. C 75,92 H 6,13%

1.1.3. (Triphenylphosphonio)-(methoxycarbonyl)methylid. Umsetzung von 118,0 g (0,45 mol) Triphenylphosphin mit 68,8 g (0,45 mol) Bromessigsäure-methylester nach [42] ergab 63,7 g (42%) Produkt¹⁹) vom Smp. 159-160° ([42]: 162-163°).

$C_{21}H_{19}O_{2}P(334,36)$ Ber. C 75,44 H 5,73% Gef. C 75,60 H 5,68%

1.2. 2-Methyl-2, 3-pentadiensäure (13). - 1.2.1. 2-Methyl-2, 3-pentadiensäure-äthylester (12). Umsetzung von 121,0 g (0,33 mol) 11a und 15,4 g (0,16 mol) Propionylchlorid²⁰) in CH₂Cl₂ nach [19] lieferte nach Destillation über eine 15-cm-Vigreux-Kolonne bei 53-55°/12 Torr 15,4 g (66%) 13; GC.≥99%. -¹H-NMR. (90 MHz, CDCl₃): 5,30 ($qa \times qa$, J=7,2 und 2,9, \updownarrow 1,70 \rightarrow qa mit Feinstruktur, H-C(4)); 4.05 (qa, J=7,15, 2 H, CH₃CH₂O); 1,77 (d, J=2,9,3 H, H₃C-C(2)); 1,66 (d, J=7,2,3 H-C(5)), \$ 5,30 \rightarrow je 1 s bei 1,77 und 1,66; 1,19 (t, J=7,15, 3 H, CH₃CH₂O).

1.2.2. Verseifung des Äthylesters 12. Wurden 16,3 g (116 mmol) 12 wie in [20b] beschrieben mit 190 ml 1,35N NaOH (H₂O/C₂H₅OH 3:1) 5 Std. unter Rückfluss gekocht, so resultierten nach vorschriftsgemässer Aufarbeitung und Destillation bei 58-60°/0,1 Torr 7,3 g (56%) eines (3:2)-Gemisches (¹H-NMR.-Evidenz) von 13 und rac. 2-Methyl-3-pentinsäure (14)²¹). Durch Überschichten des farblosen Öles mit Pentan wurde 13 in der Kälte durch fraktionierte Kristallisation rein gewonnen (¹H-NMR.). Für 14 gelang eine Anreicherung in den Mutterlaugen von bestenfalls 75% (¹H-NMR.-Evidenz). 13: farblose, dicke Kristallnadeln vom Smp. 55° ([20a]: ca. 25°). - IR. (KBr): 1955 (C=C=C), 1682 (C=O). - ¹H-NMR. (90 MHz, CDCl₃): 5,50 ($qa \times qa$, J = 7,2 und 2,9, \ddagger 1,80 \rightarrow breites s; H-C(4)); 1,85 (d, J=2,9, 3 H, $H_3C-C(2)$); 1,75 (d, J=7,2, 3 H-C(5)), $\Rightarrow 5,50 \rightarrow je \ 1 \ s \ bei \ 1,85 \ und \ 1,75.$ ¹³C-NMR. (CDCl₃): 189,1 (s, C(3)); 173,7 (s, C(1)); 94,7 (s, C(2)); 88,9 (d, C(4)); 14,7 (qa, CH₃-C(2)); 13,0 (qa, C(5)).

C₆H₈O₂ (112,13) Ber. C 64,27 H 7,19% Gef. C 63.88 H 7.20%

14: farbloses Öl vom Sdp. 58-60%, 1 Torr ([24]: 67-68%, 5 Torr). - ¹H-NMR. (90 MHz, CDCl₃; 75% rein): 3,42 ($qa \times qa$, J=7,2 und 2,7, H-C(2)); 1,78 (d, J=2,7,3 H-C(5)); 1,40 (d, J=7,2,3 H, $H_3C-C(2)$), $\gtrsim 3,42 \rightarrow je 1$ breites s bei 1,80 und 1,40.

1.2.3. Kontrollversuche. a) Ein Gemisch von 155 mg (1.4 mmol) (+)-(S)-13 ([a] $\frac{2}{89} = 22^{\circ}$; s. später) und 2,0 ml 4,80 N NaOH in H_2O/C_2H_5OH 3:1 (vgl. Fussnote 21) wurde 1 Std. unter Rückfluss gekocht. Nach üblichem Aufarbeiten wurden 150 mg (97%) eines (3:1)-Gemisches (¹H-NMR.-Evidenz) 13/14 zurückisoliert, das optisch inaktiv war.

b) Wie unter a) wurden 100 mg (0,9 mmol) eines (32:68)-Gemisches (RS)-13/(RS)-14 mit NaOH umgesetzt. Die Zurückgewinnung der Säuren ergab 98 mg (98%) eines (3:1)-Gemisches (¹H-NMR.-Evidenz) 13/14.

c) Wie unter a) wurden 200 mg (1,8 mmol) (RS)-13 mit 2,6 ml 4,80 N NaOD in D_2O/C_2H_5OD 3:1 gekocht und aufgearbeitet: 194 mg (97%) eines (3:1)-Gemisches von 4-Deuterio-2-methyl-2, 3-pentadienund 2-Deuterio-2-methyl-3-pentinsäure (d-13 bzw. d-14; ¹H-NMR.-Evidenz).

1.2.4. 2-Methyl-2, 3-pentadiensäure-methylester (3). In Anlehnung an die Veresterung von 2,3-Butadiensäure [19] wurden 2,67 g (23,8 mmol) 13 mit einem Überschuss von ätherischem Diazomethan²²) bei -78° umgesetzt. Nach Aufarbeiten und Destillieren bei 70^o/14 Torr resultierten 2.30 g (76.5%) 3; GC. \ge 99%. - IR. (Film): 1955 (C=C=C), 1715 (C=O). - ¹H-NMR. (90 MHz, CCl₄): 5,37 ($qa \times qa, J = 7,2$ und 2,9, H-C(4); 3,65 (s, 3 H, CH₃O); 1,81 (d, J=2,9,3 H, $H_3C-C(2)$); 1,74 (d, J=7,2,3 H-C(5)). -¹³C-NMR. (CDCl₃): 210,4 (s, C(3)); 168,1 (s, C(1)); 94,7 (s, C(2)); 88,5 (d, C(4)); 51,9 (qa, CH₃O); 15,2 $(qa, CH_3 - C(2)); 13,2 (qa, C(5)).$

> Ber. C 66,64 H 7,99% $C_7H_{10}O_2$ (126,16) Gef. C 66,48 H 8,08%

²⁰) Allgemein wurden für die Versuche die im Handel erhältlichen Säurechloride frisch destilliert eingesetzt.

²¹) Durch Variation der Reaktionsbedingungen (4,80N NaOH in H₂O/C₂H₅OH 3:1; 1 Std. Rückfluss) konnte der Anteil von 13 im Gemisch auf 75% gesteigert werden (Gesamtausbeute an Gemisch 98%).

²²) Alkali- und wasserfreies Diazomethan in Äther wurde nach [43] erhalten.

1.3. Allgemeine Arbeitsvorschrift zur Umsetzung von Säurechloriden mit Phosphonioalkyliden²³). In Anlehnung an die Vorschrift von Bestmann & Hartung [18] wurden in einem 100-ml-Zweihalskolben unter N₂ 24-28 mmol Ylid in ca. 40 ml THF vorgelegt und unter kräftigem Rühren bis zum Kochen unter Rückfluss erhitzt. Dann wurden sofort 12-14 mmol Säurechlorid in ca. 5 ml THF zugegeben. Nach weiteren $1-1\frac{1}{2}$ Std. Kochen wurde abgekühlt, filtriert und vorsichtig im RV. eingedampft. Der ölige Rückstand wurde 2mal mit je 20 ml Pentan ausgezogen und filtriert. Erneutes Eindampfen im RV. gefolgt von Säulenchromatographie und anschliessender Vakuumdestillation (Kugelrohr)²⁴) führte in jedem Fall zu Produkten von $\ge 98\%$ Reinheit (GC.).

1.3.1. 2-Methyl-2, 3-hexadiensäure-methylester (4). Aus 9,75 g (28 mmol) 11b und 1,49 g (14 mmol) Butyrylchlorid²⁰) nach 1 Std. 0,46 g (20,5%) 4 vom Sdp. 110°/14 Torr. - 1R. (Film): 1960 (C=C=C), 1715 br. (C=O). - ¹H-NMR. (60 MHz, CCl₄): 5,58-5,15 (*m*, H-C(4)); 3,66 (*s*, 3 H, CH₃O); 2,40-1,70 (*m*, überlagert von *d* bei 1,81, 2 H-C(5)); 1,81 (*d*, J = 2,9, 3 H, H₃C-C(2)); 1,05 (*t*, J = 7,5, 3 H-C(6)).

$$C_8H_{12}O_2$$
 (140,18) Ber. C 68,54 H 8,63% Gef. C 68,44 H 8,69%

1.3.2. 2-Methyl-2, 3-nonadiensäure-methylester (5). Aus 9,75 g (28 mmol) 11b und 2,08 g (14 mmol) Heptanoylchlorid²⁰) nach 1 Std. 1,20 g (47%) 5 vom Sdp. 120°/14 Torr. – IR. (Film): 1960 (C=C=C), 1715 (C=O). – ¹H-NMR. (90 MHz, CCl₄): 5,53–5,21 (*m*, H–C(4)); 3,68 (*s*, 3 H, CH₃O); 2,30–1,92 (*m*, 2 H–C(5)); 1,82 (*d*, J = 2,9, 3 H, H₃C–C(2)); 1,70–1,15 (*m*, 6 aliph. H); 0,94 (*t*, J = 7, 3 H–C(9)).

1.3.3. 2-Methyl-4-phenyl-2, 3-hexadiensäure-methylester (6). Aus 8,36 g (24 mmol) 11b und 2,19 g (12 mmol) 2-Phenylbutyrylchlorid (hergestellt aus der Säure und Thionylchlorid; vgl. [45]) nach $1\frac{1}{2}$ Std. 0,74 g (28,5%) 6 vom Sdp. 100°/0,1 Torr ([20a]: Sdp. 86-92°/0,09 Torr, Smp. 35-37°). - IR. (Film): 1950 (C=C=C), 1720 (C=O), 1605/1585/1500 (Aromat), 765/705 (monosubst. Aromat). - ¹H-NMR. (90 MHz, CCl₄): 7,30-7,05 (m, 5 arom. H); 3,61 (s, 3 H, CH₃O); 2,42 (qa, J=7,5, 2 H-C(5)); 1,88 (s, 3 H, H₃C-C(2)); 1,08 (t, J=7,5, 3 H-C(6)).

C14H16O2 (216,28) Ber. C 77,75 H 7,46% Gef. C 77,64 H 7,64%

1.3.4. 4-Methoxycarbonyl-2-methyl-2, 3-butadiensäure-methylester⁷) (9). Aus 8,36 g (24 mmol) 11b und 1.64 g (12 mmol) Chloroformylessigsäure-methylester²⁰) nach 1 Std. 0,20 g (10%) 9 vom Sdp. 80°/ 14 Torr. – IR. (Film): 1962 (C=C=C), 1720 br. (C=O). – ¹H-NMR. (90 MHz, CCl₄): 5,80 (qa, J=3, H–C(4)); 3,75 (2 s, $\Delta\delta=0,013, 6$ H, 2 CH₃O); 1,98 (d, J=3, 3 H, H₃C–C(2)).

C₈H₁₀O₄ (170,17) Ber. C 56,47 H 5,92% Gef. C 56,60 H 6,20%

1.3.5. 4-Methoxycarbonyl-2-methyl-2, 3-butadiensäure-äthylester⁷) (10). Aus 8,69 g (24 mmol) 11a und 1,64 g (12 mmol) Chloroformylessigsäure-methylester²⁰) nach 1 Std. 0,60 g (27%)10 vom Sdp. 100[°]/ 14 Torr. - IR. (Film): 1961 (C=C=C), 1720 br. (C=O). - ¹H-NMR. (60 MHz, CCl₄): 5,80 (qa, J = 3,5, H-C(4)); 4,25 (qa, J = 7, 2 H, CH₃CH₂O); 3,76 (s, 3 H, CH₃O); 2,00 (d, J = 3,5, 3 H, H₃C-C(2)); 1,33 (t, J = 7, 3 H, CH₃CH₂O).

C₉H₁₂O₄ (184,19) Ber. C 58,69 H 6,57% Gef. C 58,42 H 6,40%

1.4. Umsetzung von (Triphenylphosphonio)-(methoxycarbonyl)methylid mit Äthylphenylketen. – 1.4.1. Äthylphenylketen. In Analogie zu [20b] wurden 40,0 g (0,22 mol) 2-Phenylbutyrylchlorid (vgl. 1.3.3) mit 22,3 g (0,22 mol) Triäthylamin versetzt. Destillation bei 80-83°/14 Torr ergab 13,0 g (40,5%) Äthylphenylketen. – ¹H-NMR. (60 MHz, CDCl₃): 7,4-6,7 (m, 5 arom. H); 2,35 (qa, J=7, CH₃CH₂); 1,15 (t, J=7, CH₃CH₂).

1.4.2. 4-Phenyl-2, 3-hexadiensäure-methylester (7). Analog der Vorschrift 1.3 wurden 6,69 g (20 mmol) (Triphenylphosphonio)-(methoxycarbonyl)methylid (vgl. 1.1.3) in 35 ml Toluol vorgelegt und in der Hitze schnell mit einer Lösung von 3,22 g (22 mmol) Äthylphenylketen in 5 ml Toluol versetzt. Nach 2 Std. Reaktionsdauer wurden nach Abkühlen, Eindampfen im RV. und 2maligem Ausziehen mit je 20 ml Pentan 5,05 g (90,5%) Triphenylphosphinoxid abfiltriert. Die vereinigten Pentanphasen wurden wie unter 1.3 angegeben aufgearbeitet und lieferten 2,60 g (64,5%) 7 vom Sdp. 100°/0,1 Torr und Smp.

²³) Die Reaktionsbedingungen der nachfolgenden Umsetzungen wurden nicht optimiert.

²⁴) Das bei höher siedenden Allenestern mitdestillierende Triphenylphosphinoxid wurde nach [44] mit wasserfreiem Zinkchlorid komplexiert und abgetrennt.

	C.	111	Tabelle 4.	Physikalis 5	che Eigensch	aften der	optisch ak	ctiven 2-M	fethyl-2, 3- ₁	pentadiensät	nen		4
м Геј	ess- Saure the	Umkr. (Ace-	.") Umkr.") (Pen-	Smp.	رد) me/ml		[a] ¹ , ^u)					e ^e)	p ^r)
ž		ton)	tan)	2	0		365	436	546	578	589		
-	(<i>–</i>)-(<i>R</i>)-13	1	1	54-55	9,1 und 2(.5	- 47,95	- 27,46	- 14,98	- 13,02	- 12,44	$0,15 \pm 0,02$	0,17
2	(<i>RS</i>)-13	I	ŝ	55	I		I	ı	ı	ł	Ì	0,00	0,00
e	(+)-(S)-13	1	1	55	13,9		153,57	86,33	46,55	40,65	38,85	$0,54 \pm 0,02$	0,53
4	(+)-(S)-13	7	1	56	13,5		184,52	104,22	56,30	48,59	46,67	$0,62 \pm 0,02$	0,64
5	(+)-(S)-13	г.	- (58	17,6		226,02	127,61	68,92 25 22	59,72	57,39	$0,84 \pm 0,02$	0,80
ا ہ	(+)-(S)-13	10	2	2	7,7 und 15	7	279,87	157,40	85,06	74,01	70,39	$0,92 \pm 0,02$	0,95
a a	Anzahl Umkristall	isationen d	es Cinchoni	idin-Addu	ktes (1. Kris	tallisation	1 = 1).	e) Ena	intiomeren	reinheiten	e von de	n entsprechenden E	stern 3
<u> </u>	Anzani Umkristali In me Säure/1 ml <i>À</i>	Isationen d Athanol («I	er ireien Sa Uvasol»).	ure.				n Da	inommen ische Reinl	(vgl. <i>Tab. 5</i>) heitn (vol F	l. Neenote 7) herechnet aus den ü	haralla
`Ŧ	Messtemp. 20°, λ in	ı nm; Dreh	werte in Gr	ad, kein V	'orzeichen be	deutet +		A de	llenlängen	gemittelten	Werten (rel. Fehler ≤2,5%).	UCI AILC
		Tabe	lle 5. Physik	calische Ei	igenschaften .	ler optisc	h aktiven	2-Methyl	-2, 3-pentaa	liensäure-me	thylester		
		Mess-	Ester	(q)	[a] ₂ ^c)					e ^d)	d.	(e)	
		reihe			376	744	14	013	200				
		NI.")			COC	430	9 4 0	8/0	680				
		1(1)	(-)-(<i>R</i>)-3	12,6	- 47,46	-27,37	- 14,86	- 12,90	- 12,32	0,15±(0,02 0	.17	
		2 (2)	(RS)-3	I	ı	ı	ł	t	t	0,00	0	00	
		ς	(+)-(S)-3	8,2	36,59	20,85	11,59	10,00	9,60	0,13±(0,01 0	,13	
		4	(+)-(S)-3	6,5	114,62	65,69	36,15	30,77	29,85	0,39±(0,02 0	,40	
		5 (3)	(+)-(<i>S</i>)-3	4,5	141,33	80,22	44,44	39,33	37,04	0,54±(0,02 0	,50	
		6 (4)	(+)-(S)-3	15,2	195,59	112,04	61,38	53,62	51,00	0,62±(0,02	.67	
		7 (5)	$(+)^{-(S)-3}$	10,0	230,40	132,00	72,30	63,50	60,10	0,84±(0,02 0	.80	
		8 (6)	(+)-(S)-3	7,8	262,44	150,77	82,44	72,05	69,00	0,92±(0,02 0	,92	
		^a) Die	Ziffern in k	Clammern	verweisen au	ıf die ent	sprechene	ien Säure	-Fraktione	n der Tabel	le 4.		
		n nl (d	ng Ester/1 m	ıl Äthanol	(«Uvasol»).								
		c) Mes	sstemp. 20°,	λ in nm; I viabait a.	Drehwerte in ₁₂₁ Eucenote	Grad, ke	ine Vorze	eichen bee	leutet +.				
) (J	ische Reinh	eit p (vgl.	Fussnote 2)	berechne	t aus den	ر ا مسر بر بر über alle	Wellenlän	Igen gemitte	lten Wer	ten	
		(rel.	Fehler ≤2,	.5%).									

Messreihe Nr. ^b)	Ester	Lösungs- mittel	$\Delta\delta(CH_3Q)^c)$ [ppm]	$\Delta\Delta\delta(CH_3O)$ [ppm]	Q ^d)
1(1)	(-)-(R)-3	CCl ₄	1,30	0,030	1,35±0,05
2 (2)	(RS)- 3	CCl_4	1,35	0,035	1,00
3	(+)-(S)-3	CCl ₄	1,25	0,035	1,31±0,03
4	(+)-(S)-3	CCl ₄	1,25	0,035	$2,28 \pm 0,05$
5 (3)	(+)-(S)-3	CCl_4	1,35	0,030	$3,34 \pm 0,07$
6 (4)	(+)-(S)-3	CCl ₄	1,30	0,035	$4,43 \pm 0,06$
7 (5)	(+)-(S)-3	CCl ₄	1,25	0,030	11,87±0,20
8 (6)	(+)-(S)-3	TCFE	1,25	0,040	$24,96\pm0,50$

 Tabelle 6. Daten der Eu(hfc)₃-induzierten ¹H-NMR.-Verschiebungen bei den optisch aktiven 2-Methyl-2, 3-pentadiensäure-methylestern^a)

a) Ca. 1 M Lösungen bzgl. des Esters unter Zugabe von ca. 0,125 Mol-Äquiv. Eu(hfc)₃.

b) Die Ziffern in Klammern verweisen auf die entsprechenden Säure-Fraktionen der Tabelle 4.

^c) Im Vergleichsspektrum ohne Verschiebungsreagenz erscheint das Signal als *s* bei 3,65 (CCl₄) bzw. 3,70 ppm (TCFE); $\Delta \delta$ = Mittlerer Verschiebungswert der beiden *s* minus 3,65 (bzw. 3,70) ppm.

d) Q=Verhältnis der Enantiomeren, berechnet aus den entsprechenden Flächen (Pikhöhe×Halbhöhenbreite) von 10 in beiden Feldrichtungen aufgenommen ¹H-NMR,-Spektren (vgl. *Fig. lc, d*).

43-44° ([20a]: Sdp. 90-94°/0,05 Torr, Smp. 41-42°). - 1R. (KBr): 1940 (C=C=C), 1718 (C=O), 1599/1579/1495 (Aromat), 765/695 (monosubst. Aromat). - ¹H-NMR. (90 MHz, CCl₄): 7,45-7,15 (*m*, 5 arom. H); 5,90 (*t*, J = 3,3, H-C(2)); 3,70 (*s*, 3 H, CH₃O); 2,55 ($qa \times d$, J = 7,5 und 3,3, 2 H-C(5)); 1,18 (*t*, J = 7,5, 3 H-C(6)).

C13H14O2 (202,26) Ber. C 77,20 H 6,98% Gef. C 76,97 H 7,10%

1.5. 4-Methoxycarbonyl-2, 3-butadiensäure-methylester⁷) (8). In Analogie zu 1.2.4 wurden 500 mg (3,90 mmol) (RS)-Allen-1,3-dicarbonsäure [21] (vgl. [22] [23])²⁵) verestert: 520 mg (86%) 8 vom Sdp. (Kugelrohr) 80°/0,1 Torr. - IR. (Film): 1965 (C=C=C). 1730 br. (C=O). - ¹H-NMR. (60 MHz, CCl₄): 6,03 (s, 2 H, H-C(2) und H-C(4)); 3,85 (s, 6 H, 2 CH₃O).

2. Enantiomerentrennung von (RS)-2-Methyl-2,3-pentadiensäure (13) mit Cinchonidin sowie Überführung in die optisch aktiven Methylester (R)-3 und (S)-3. – Die Vorschrift zur Antipodenspaltung von Runge et al. [20a] wurde wie folgt modifiziert: Eine feinverteilte, feste Mischung von 11,21 g (100 mmol) (RS)-13 und 15,33 g (52 mmol) Cinchonidin wurde langsam auf 60° erhitzt und dann mit soviel Aceton versetzt (ca. 800 ml), dass eine klare Lösung vorlag. Nach dem Abkühlen wurde über Nacht bei 0° auskristallisieren gelassen. Sowohl die abfiltrierte und im RV. eingedampfte Mutterlauge, wie auch ein Aliquot des gebildeten Salzes²⁶) (ca. 4 g) wurden zur Freisetzung der Säure aufgehoben. Der Rest des Salzes wurde in obiger Art 9mal aus siedendem Aceton umkristallisiert, wobei weitere Aliquote entnommen wurden (vgl. Tab. 4). Zur Rückgewinnung der freien Säuren (R)-13 bzw. (S)-13 wurden die einzelnen Fraktionen mit verd. Schwefelsäure [20b] aufgearbeitet und mindestens Imal aus siedendem Pentan umkristallisiert. Nach dem Messen der Drehwinkel a (vgl. Tab. 4) wurden die Säuren nach Methode 1.2.4 in die entsprechenden Methylester (R)-3 bzw. (S)-3 übergeführt. Von den destillierten Methylestern (Sdp. 65-75^o/14 Torr; GC. \geq 99%) wurden wiederum die Drehwinkel a (vgl. Tab. 5) bestimmt und 90-MHz-¹H-NMR.-Spektren²⁷) ohne und mit Zusatz der optisch aktiven Verschiebungsreagenzien aufgenommen (vgl. Tab. 6).

²⁵) Wir danken Herrn Dipl.-Chem. M. Cosandey für die Überlassung der Probe.

²⁶) C₂₅H₃₀N₂O₃ (406,53) Ber. C 73,86 H 7,44 N 6,89% Gef. C 73,60 H 7,49 N 6,87%.

 ²⁷) ¹³C-NMR.-Spektrum von (RS)-3 (1M in TCFE unter Zusatz von 0,125 Mol-Äquiv. Eu(hfc)₃): 211,4 (s, C(3)); 167,6 (s, C(1)); 96,1 (s, C(2)); 88,4 (d, C(4)); 52,5 (qa, CH₃O); 15,9 (qa, CH₃-C(2)); 12,9 (qa, C(5)).

LITERATURVERZEICHNIS

- M. Raban & K. Mislow, 'Topics in Stereochemistry' Vol. 2, Herausgeber N.L. Allinger & E.L. Eliel, Interscience, New York 1967, S. 199.
- W. Bähr & H. Theobald, «Organische Stereochemie», Springer-Verlag, Berlin, Heidelberg 1973, S. 71.
- [3] R. Rossi & P. Diversi, Synthesis 1973, 25.
- [4] S. H. Wilen, A. Collet & J. Jacques, Tetrahedron 33, 2725 (1977).
- [5] B.C. Mayo, Chem. Soc. Rev. 2, 49 (1973).
- [6] a) K.A. Kime & R.E. Sievers, Aldrichimica Acta 10, 54 (1977); b) G.R. Sullivan, 'Topics in Stereochemistry' Vol. 10, Herausgeber E. L. Eliel & N. L. Allinger, Interscience, New York 1978, S. 287.
- [7] A. Claesson, L.-J. Olsson, G.R. Sullivan & H.S. Mosher, J. Amer. chem. Soc. 97, 2919 (1975).
- [8] R. R. Fraser, M.A. Petit & J.K. Saunders, Chem. Commun. 1971, 1450.
- [9] F. Lefèvre, M.-L. Martin & M.L. Capmau, C. r. Séances hébd. Acad. Sci. Ser. C 275, 1387 (1972).
- [10] G. M. Whitesides & D. W. Lewis, J. Amer. chem. Soc. 92, 6979 (1970).
- [11] J.K.M. Sanders & D.H. Williams, J. Amer. chem. Soc. 93, 641 (1971).
- [12] J.K.M. Sanders, S.W. Hanson & D.H. Williams, J. Amer. chem. Soc. 94, 5325 (1972).
- [13] K. Roth & D. Rewicki, Kontakte (Merck) 2, 9 (1978).
- [14] H.L. Goering, J.N. Eikenberry & G.S. Koermer, J. Amer. chem. Soc. 93, 5913 (1971).
- [15] M.D. McCreary, D.W. Lewis, D.L. Wernik & G.M. Whitesides, J. Amer. chem. Soc. 96, 1038 (1974).
- [16] H.L. Goering, J.N. Eikenberry, G.S. Koermer & Ch.J. Lattimer, J. Amer. chem. Soc. 96, 1493 (1974).
- [17] B. Feibush, M.F. Richardson, R.E. Sievers & Ch.S. Springer, jr., J. Amer. chem. Soc. 94, 6717 (1972).
- [18] H.-J. Bestmann & H. Hartung, Chem. Ber. 99, 1198 (1966).
- [19] S.D. Andrews, A.C. Day & R.N. Inwood, J. chem. Soc. (C) 1969, 2443.
- [20] a) W. Runge, G. Kresze & E. Ruch, Liebigs Ann. Chem. 1975, 1361; b) iidem, ibid. 756, 112 (1972).
- [21] A. Huwiler, Dissertation, Universität Freiburg i. Ü. 1977.
- [22] E.R.H. Jones, G.H. Mansfield & M.C. Whiting, J. chem. Soc. 1954, 3208.
- [23] J. Cymerman Craig & M. Moyle, J. chem. Soc. 1963, 5356.
- [24] M. M. Martin & E. B. Sanders, J. Amer. chem. Soc. 89, 3777 (1967).
- [25] E.R.H. Jones, L. Skatteböl & M.C. Whiting, J. chem. Soc. 1956, 4765.
- [26] C.C. Shen & C. Ainsworth, Tetrahedron Letters 1979, 85, 87, 89 und 93.
- [27] W. Runge & G. Kresze, J. Amer. chem. Soc. 99, 5597 (1977).
- [28] A.F. Cockerill, G.L.O. Davies, R.C. Harden & D.M. Rackham, Chem. Rev. 73, 553 (1973).
- [29] A. Horeau, Tetrahedron Letters 1969, 3121.
- [30] E. Ruch, W. Runge & G. Kresze, Angew. Chem. 85, 10 (1973).
- [31] H. Hart & G. M. Love, Tetrahedron Letters 1971, 625.
- [32] R.E. Lenkinski & J. Reuben, J. Amer. chem. Soc. 98, 4065 (1976).
- [33] O. Ceder & B. Beijer, Acta chem. Scand. 26, 2977 (1972).
- [34] a) G. Montaudo, V. Librando, S. Caccamese & P. Maravigna, J. Amer. chem. Soc. 95, 6365 (1973);
 b) P. Finocchiaro, A. Recca, P. Maravigna & G. Montaudo, Tetrahedron 30, 4159 (1974).
- [35] R. von Ammon & R. D. Fischer, Angew. Chem. 84, 737 (1972).
- [36] O. Hofer, 'Topics in Stereochemistry' Vol. 9, Herausgeber N.L. Allinger & E.L. Eliel, Interscience, New York 1976, S.111.
- [37] G.I.L. Jones & N.L. Owen, J. mol. Struct. 18, 1 (1973).
- [38] J.D. Dunitz & P. Strickler, 'Structural Chemistry and Molecular Biology', Herausgeber A. Rich & N. Davidson, Freeman, San Francisco 1968, S. 595.
- [39] K. Bolton, N.L. Owen & J. Sheridan, Nature 218, 266 (1968).
- [40] L. Leiserowitz & F. Nader, Angew. Chem. 85, 150 (1973).
- [41] K. Grob, Helv. 48, 1362 (1965); idem, Helv. 51, 718 (1968); vgl. auch K. Grob & G. Grob, Chimia 31, 175 (1977).
- [42] O. Isler, H. Gutmann, M. Montavon, R. Rüegg, G. Ryser & P. Zeller, Helv. 40, 1242 (1957).
- [43] Th.J. DeBoer & H.J. Backer, Org. Synth. 36, 16 (1956).
- [44] H.-J. Bestmann, H. Buckschewski & H. Leube, Chem. Ber. 92, 1345 (1959).
- [45] «Organikum», VEB Deutscher Verlag der Wissenschaften, Berlin 1969, 9. Aufl., S. 469.